Affiliation:
1. Department of Mathematics , JIS College of Engineering , Kalyani , Nadia , West Bengal , India
Abstract
Abstract
In this work, necessary and sufficient conditions for oscillation of solutions of second-order neutral impulsive differential system
{
(
r
(
t
)
(
z
′
(
t
)
)
γ
)
′
+
q
(
t
)
x
α
(
σ
(
t
)
)
=
0
,
t
≥
t
0
,
t
≠
λ
k
,
Δ
(
r
(
λ
k
)
(
z
′
(
λ
k
)
)
γ
)
+
h
(
λ
k
)
x
α
(
σ
(
λ
k
)
)
=
0
,
k
∈
\left\{ {\matrix{{{{\left( {r\left( t \right){{\left( {z'\left( t \right)} \right)}^\gamma }} \right)}^\prime } + q\left( t \right){x^\alpha }\left( {\sigma \left( t \right)} \right) = 0,} \hfill & {t \ge {t_0},\,\,\,t \ne {\lambda _k},} \hfill \cr {\Delta \left( {r\left( {{\lambda _k}} \right){{\left( {z'\left( {{\lambda _k}} \right)} \right)}^\gamma }} \right) + h\left( {{\lambda _k}} \right){x^\alpha }\left( {\sigma \left( {{\lambda _k}} \right)} \right) = 0,} \hfill & {k \in \mathbb{N}} \hfill \cr } } \right.
are established, where
z
(
t
)
=
x
(
t
)
+
p
(
t
)
x
(
τ
(
t
)
)
z\left( t \right) = x\left( t \right) + p\left( t \right)x\left( {\tau \left( t \right)} \right)
Under the assumption
∫
∞
(
r
(
η
)
)
-
1
/
α
d
η
=
∞
\int {^\infty {{\left( {r\left( \eta \right)} \right)}^{ - 1/\alpha }}d\eta = \infty }
two cases when γ>α and γ<α are considered. The main tool is Lebesgue’s Dominated Convergence theorem. Examples are given to illustrate the main results, and state an open problem.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献