Affiliation:
1. 1 Department of Mathematics, Faculty of Sciences Aïn Chock , University Hassan II , Casablanca , Morocco
Abstract
Abstract
The aim of this paper is to give necessary and sufficient conditions in terms of the Fourier Laguerre-Bessel transform 𝒲
LB
f of the function f to ensure that f belongs to the generalized Lipschitz classes H
α
k
(X) and h
k
α
(X), where X =[0, +∞) × [0, +∞).
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference18 articles.
1. JEBBARI, E.—SIFI, M.—SOLTANI, F.: Laguerre-Bessel wavelet transform, Glob. J. Pure Appl. Math. 1 (2005), 13–26.
2. FARAUT, J.—HARZALLAH, K. : Deux cours d’Analyse Harmonique.In: Ecole d’été d’Analyse Harmonique de Tunis,Birkhaüser, Boston 1984.
3. KORTAS, H.—SIFI, M.: Lévy-Khintchine formula and dual convolution semigroups associated with Laguerre and Bessel functions. In: ICPA98 (Hammamet). Potential Anal. Vol. 15 (2001), no. 1–2, pp. 43–58.
4. NEGZAOUI, S.—REBHI, S.: On the concentration of a function and its Laguerre-Bessel transform, Math. Inequal. Appl. 22 (2019), no. 3, 825–836.
5. TITCHMARSH, E. C.: Introduction to the Theory of Fourier Integral. Oxford : Clarendon Press, 1948.