3D Cell Image Segmentation by Modified Subjective Surface Method
Author:
Uba MarKjoe Olunna12, Mikula Karol1, Krivá Zuzana1, Nguyen Hanh3, Savy Thierry3, Kardash Eléna3, Peyríeras Nadine3
Affiliation:
1. Faculty of Civil Engineering , Slovak University of Technology , Bratislava , Slovakia 2. Faculty of Physical Sciences , University of Nigeria , Nsukka , Nigeria 3. BioEmergences Laboratory (USR 3695), CNRS , University Paris-Saclay , Gif-sur-Yvette, France
Abstract
Abstract
In this work, we focused on 3D image segmentation where the segmented surface is reconstructed by the use of 3D digital image information and information from thresholded 3D image in a local neighbourhood. To this end, we applied a mathematical model based on the level set formulation and numerical method which is based on the so-called reduced diamond cell approach. The segmentation approach is based on surface evolution governed by a nonlinear PDE, the modified subjective surface equation. This is done by defining the input to the edge detector function as the weighted sum of norm of presmoothed 3D image and norm of presmoothed thresholded 3D image in a local neighbourhood. For the numerical discretization, we used a semi-implicit finite volume scheme. The method was applied to real data representing 3D microscopy images of cell nuclei within the zebrafish pectoral fin.
Publisher
Walter de Gruyter GmbH
Reference13 articles.
1. [1] CORSARO, S.—MIKULA, K.—SARTI, A.—SGALLARI, F.: Semi-implicit co-volume method in 3D image segmentation, SIAM J. Sci. Comput. 28 (2006), no. 6, 2248–2265. 2. [2] EVANS, L. C.—SPRUCK, J.:, Motion of level sets by mean curvature I, J. Differential Geom. 33 (1991), 635–681. DOI:10.4310/jdg/121444655910.4310/jdg/1214446559 3. [3] FAURE, E.—SAVY, T.—RIZZI, B.—MELANI, C.—DRBLÍKOVÁ, O.—FABREGÈS, D.—ŠPIR, R.—HAMMONS, M.—ČUNDERLÍK, R.—RECHER, G.—LOMBARDOT, B.—DULOQUIN, L.—COLIN, I.—KOLLÁR, J.—DESNOULEZ, S.—AFFATICATI, P.—MAURY, B.—BOYREAU, A.—NIEF, J.—CALVAT, P.—VERNIER, P.— FRAIN, M.—LUTFALLA, G.—KERGOSIEN, Y.—SURET, P.—REMEŠÍKOVÁ, M.—DOURSAT, R.—SARTI, A.—MIKULA, K.—PEYRIÉRAS, N.— BOURGINE, P.: An algorithmic workflow for the automated processing of 3D+time microscopy imaging of developing organisms and reconstruction of their cell lineage, Nature Commun. 7 (2016), February 2016. Article number: 8674, DOI:10.1038/ncomms9674, https://www.math.sk/mikula/NCOMMS-15-07907-T_MainArticle.pdf 4. [4] FROLKOVIČ, P.—MIKULA, K.—PEYRIÉRAS, N.—SARTI, A.: A counting number of cells and cell segmentation using advection-diffusion equations,Kybernetika, 43 (2007), no. 6, 817–829. 5. [5] KÓSA, B.—MIKULA, K.—UBA, M. O.—WEBERLING, A.—CHRISTODOULOU, N.— ZERNICKA-GOETZ, M.: 3D Image Segmentation Supported by A Point Cloud, Discrete and Continuous Dynamical Systems - Series S (DCDS-S), (Submitted).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|