Affiliation:
1. 1 Faculty of Sciences Dhar El Mahraz , Sidi Mohamed ben Abdellah University , Atlas-Fez , MOROCCO
2. 2 Institute of Mathematics , University of Debrecen , Debrecen , HUNGARY
Abstract
AbstractLetKbe a pure number field generated by a rootαof a monic irreducible polynomialf(x)=xn−mwithma rational integer and 3≤n≤ 9 an integer. In this paper, we calculate an integral basis of ℤK, and we study the monogenity ofK, extending former results to the case whenmis not necessarily square-free. Collecting and completing the corresponding results in this more general case, our purpose is to provide a parallel to [Gaál, I.—Remete, L.:Power integral bases and monogenity of pure fields,J.Number Theory,173(2017), 129–146], where only square-free values ofmwere considered.
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference29 articles.
1. [1] AHMAD, S.—NAKAHARA, T.– HUSNINE, S. M. HUSNINE: Power integral bases for certain pure sextic fields, Int.J.NumberTheory 10, (2014), no. 8, 2257–2265.
2. [2] AHMAD, S.—NAKAHARA, T.—HAMEED, A.: On certain pure sextic fields related to a problem of Hasse,Int.J.Alg.Comput., 26, No 3 (2016), no. 3, 577–583 .
3. [3] ALACA, S.: p-integral bases of a cubic field, Proc. Am. Math. Soc. 126 (1998), 1949–1953.10.1090/S0002-9939-98-04422-0
4. [4] ALACA, S.—WILLIAMS, K.: p-integral bases of a quartic field defined by a trinomial x4 + ax + b, Far. East. J. Math. Sci. 12 (2004), 137–168.
5. [5] HAMEED, A.—NAKAHARA, T.: Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 58(106) (2015), no. 4, 419–433.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献