Efficient 3D Shape Registration by Using Distance Maps and Stochastic Gradient Descent Method

Author:

Okock Polycarp Omondi12,Urbán Jozef2,Mikula Karol1

Affiliation:

1. Slovak University of Technology , Bratislava , Slovakia

2. TatraMed Software s.r.o, Bratislava , Slovakia

Abstract

Abstract This paper presents an efficient 3D shape registration by using distance maps and stochastic gradient descent method. The proposed algorithm aims to find the optimal affine transformation parameters (translation, scaling and rotation) that maps two distance maps to each other. These distance maps represent the shapes as an interface and we apply level sets methods to calculate the signed distance to these interfaces. To maximize the similarity between the two distance maps, we apply sum of squared difference (SSD) optimization and gradient descent methods to minimize it. To address the shortcomings of the standard gradient descent method, i.e., many iterations to compute the minimum, we implemented the stochastic gradient descent method. The outcome of these two methods are compared to show the advantages of using stochastic gradient descent method. In addition, we implement computational optimization’s such as parallelization to speed up the registration process.

Publisher

Walter de Gruyter GmbH

Reference25 articles.

1. [1] COOK, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs. Applications of GPU Computing Series. Elsevier Science, London, 2012.

2. [2] COOTES, T.—TAYLOR, C.—COOPER, D.—GRAHAM, J.: Active Shape Models-Their Training and Application, Computer Vision and Image Understanding 61 (1995), 38–59.

3. [3] FOMEL, S.: Traveltime Computation with the Linearized Eikonal Equation, Report, Sep-94, 1997, 123–131.

4. [4] HYSING, S.—TUREK, S.: The Eikonal equation: numerical efficiency vs. algorithmic complexity on quadrilateral grids.In: Proceedings of the Algorythmy 2005, pp. 22–31.

5. [5] INTEL® :. Intel® CoreTM i7-5820K Processor (15M Cache, up to 3.60 GHz) Product Specifications. https://ark.intel.com/content/www/us/en/ark/products/82932/intel-core-i7-5820k-processor-15m-cache-up-to-3-60-ghz.html.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3