Around Taylor’s Theorem on the Convergence of Sequences of Functions

Author:

Horbaczewska Grażyna1,Rychlewicz Patrycja1

Affiliation:

1. Faculty of Mathematics and Computer Sciences , Łódź University , Łódź , POLAND

Abstract

Abstract Egoroff’s classical theorem shows that from a pointwise convergence we can get a uniform convergence outside the set of an arbitrary small measure. Taylor’s theorem shows the possibility of controlling the convergence of the sequences of functions on the set of the full measure. Namely, for every sequence of real-valued measurable factions |fn } n∈ℕ pointwise converging to a function f on a measurable set E, there exist a decreasing sequence |δn } n∈ℕ of positive reals converging to 0 and a set AE such that E \ A is a nullset and lim n + | f n ( x ) f ( x ) | δ n = 0 for all x A . Let J ( A , { f n } ) {\lim _{n \to + \infty }}\frac{{|{f_n}(x) - f(x)|}}{{{\delta _n}}} = 0\,{\rm{for}}\,{\rm{all}}\,x \in A.\,{\rm{Let}}\,J(A,\,\{ {f_n}\} ) denote the set of all such sequences |δn } n∈ℕ. The main results of the paper concern basic properties of sets of all such sequences for a given set A and a given sequence of functions. A relationship between pointwise convergence, uniform convergence and the Taylor’s type of convergence is considered.

Publisher

Walter de Gruyter GmbH

Reference8 articles.

1. [1] BRUCKNER, A. M.—BRUCKNER, J. B.—THOMSON, B. S.: Real Analysis (2nd editon). 2008; https://www.classicalrealanalysis.com.

2. [2] BUKOVSK Á, Z.: Quasinormal convergence, Math. Slovaca 41 (1991), no. 2, 137–146.

3. [3] BUKOVSKÝ, L.—RECŁAW, I.—REPICKÝ, M.: Spaces not distinguishing pointwise and quasinormal convergence of real functions, Topology nad its Applications 41 (1991), no. 1–2, 25–40.

4. [4] CSÁSZÁR, Á.—LACZKOVICH, M.: Discrete nad equal convergence, Studia Sci. Math. Hungar. 10 (1975), no. 3–4, 463–472.

5. [5] FREMLIN, D. H.: Consequences of Martin’s Axiom. In: Cambridge Tracts in Mathematics, Vol. 84. Cambridge Univ. Press, Cambridge, 1984.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3