Super and Hyper Products of Super Relations

Author:

Száz Árpád1

Affiliation:

1. Department of Mathematics , Faculty of Natural Sciences, University of Debrecen , Debrecen , HUNGARY

Abstract

Abstract If R is a relation on X to Y, U is a relation on P (X) to Y, and V is a relation on P (X) to P (Y), then we say that R is an ordinary relation, U is a super relation, and V is a hyper relation on X to Y. Motivated by an ingenious idea of Emilia Przemska on a unified treatment of open- and closed-like sets, we shall introduce and investigate here four reasonable notions of product relations for super relations. In particular, for any two super relations U and V on X, we define two super relations U * V and U * V, and two hyper relations UV and U * V on X such that : ( U * V ) ( A ) = ( A U ( A ) ) V ( A ) , ( U * V ) ( A ) = ( A U ( A ) ) U ( A ) \begin{array}{*{20}{l}} {(U*V)(A) = (A\mathop \cup \nolimits^ U(A))\mathop \cap \nolimits^ V(A),}\\ {(U*V)(A) = (A\mathop \cap \nolimits^ U(A))\mathop \cup \nolimits^ U(A)} \end{array} and ( U V ) ( A ) = { B X : ( U * V ) ( A ) B ( U * V ) ( A ) } , ( U * V ) ( A ) = { B X : ( U V ) ( A ) B ( U V ) ( A ) } \begin{array}{*{20}{l}} {(UV)(A) = \{ B \subseteq X:\,(U*V)(A) \subseteq B \subseteq (U*V)(A)\} ,}\\ {(U*V)(A) = \{ B \subseteq X:\,(U\mathop \cap \nolimits^ V)(A) \subseteq B \subseteq (U\mathop \cup \nolimits^ V)(A)\} } \end{array} for all AX. By using the distributivity of the operation ∩ over ∪, we can at once see that U * VU * V. Moreover, if UV, then we can also see that U * V = U * V. The most simple case is when U is an interior relation on X and V is the associated closure relation defined such that V (A) = U (Ac ) c for all AX.

Publisher

Walter de Gruyter GmbH

Reference60 articles.

1. [1] ABD EL-MONSEF, M. E.—EL-DEEB, S. N.—MAHMOUD, R.A.: β-open sets and ß--continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.

2. [2] ANDRIJEVlĆ, D.: Semi-preopen sets, Mat. Vesnik 38 (1986), 24–32.

3. [3] ANDRIJEVlĆ, D.: On b-open sets, Mat. Vesnik 48 (1996), 59–64.

4. [4] ARIANPOOR, H.: Preorder relators and generalized topologies, J. Linear Topol. Algebra 5 (2016), 271–277.

5. [5] ČECH, E.: Topological Spaces. Academia, Prague, 1966.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3