Affiliation:
1. Department of Mathematics , University of Delhi , New Delhi , INDIA
Abstract
Abstract
A space X is said to have the star-K-I-Hurewicz property (SKIH) [Tyagi, B. K.—Singh, S.—Bhardwaj, M. Ideal analogues of some variants of Hurewicz property, Filomat 33 (2019), no. 9, 2725–2734] if for each sequence (Un
: n ∈ ℕ) of open covers of X there is a sequence (Kn
: n ∈ ℕ) of compact subsets of X such that for each x ∈ X, {n ∈ ℕ : x ∉ St(Kn, Un
)} ∈ I, where I is the proper admissible ideal of ℕ. In this paper, we continue to investigate the relationship between the SKIH property and other related properties and study the topological properties of the SKIH property.
Reference26 articles.
1. [1] BHARDWAJ, M.—TYAGI, B. K.—SINGH, S.: Star-Hurewicz modulo an ideal property property in topological spaces, J. Indian Math. Soc. (N.S.) 88 (2021), no. 1–2, 33–45.
2. [2] DAS, P.: Certain types of open covers and selection principles using ideals, Houston J. Math. 39 (2013), no. 2, 637–650.
3. [3] DAS, P.—KOČINAC, LJ. D. R.—CHANDRA, D.: Some remarks on open covers and selection principles using ideals, Topol. Appl. 202 (2016), 183–193.10.1016/j.topol.2016.01.003
4. [4] DAS, P.—CHANDRA, D.—SAMANTA, U.: On certain variations I-Hurewicz space, Topol. Appl. 241 (2018), 363–376.10.1016/j.topol.2018.03.027
5. [5] DOUWEN, E. K. VAN.—REED, G. K.—ROSCOE, A. W.—TREE, I.J.: Star covering properties, Topol. Appl. 39 (1991), 71–103.10.1016/0166-8641(91)90077-Y
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献