Analysis of Missing Value Imputation Application with K-Nearest Neighbor (K-NN) Algorithm in Dataset

Author:

Sallaby Achmad Fikri,Azlan Azlan

Abstract

Missing value is a problem that is still often found in many studies. Missing value is where data or data features are not available completely and intact. This still happens a lot in datasets that will be used in research. The missing value is caused by many factors such as human error, unavailable data or even from a virus in the database. Data is important for research, incomplete data will affect the results obtained. Data mining is a process that is very influential on data, including the classification process. Classification in data mining can be done if the data is complete. These problems can be overcome by the Imputation process by combining it with the K-Nearest Neighbor process or the process can be called K-Nearest Neighbor Imputation (K-NNI). In the research that has been done the K-Nearest Neighbor Imputation algorithm can overcome the problem of missing values in the dataset. This can be seen from the level of accuracy obtained where the accuracy of the classification process before handling the missing value is 77.01% while after the imputation process the accuracy is 78.31%

Publisher

STMIK Budi Darma

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated ECOD-KNN Algorithm for Missing Values Imputation in Datasets: Outlier Removal;International Journal of Innovative Science and Research Technology (IJISRT);2024-08-08

2. Assessment of Different Methods for Estimation of Missing Rainfall Data;Water Resources Management;2024-07-31

3. Enhancing Data Quality in Smart Video Surveillance Systems: A Whale Optimizer-Based Imputation Algorithm;2024 Intelligent Methods, Systems, and Applications (IMSA);2024-07-13

4. Datascape: exploring heterogeneous dataspace;Scientific Reports;2024-04-05

5. Prediction of Stress-Dependent Soil Water Retention Using Machine Learning;Geotechnical and Geological Engineering;2024-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3