Pengelompokkan Data Bencana Alam Berdasarkan Wilayah, Waktu, Jumlah Korban dan Kerusakan Fasilitas Dengan Algoritma K-Means

Author:

Murdiaty Murdiaty,Angela Angela,Sylvia Chatrine

Abstract

Indonesia has fertile soil, natural resources and abundant marine resources. However, Indonesia is also not immune to the risk of natural disasters which are a series of events that disturb and threaten life safety and cause material and non-material losses. Indonesia's strategic geological location causes Indonesia to be frequently hit by earthquakes, volcanic eruptions and other natural disasters. From the data collected, natural disasters that occurred in Indonesia consisted of several categories, namely earthquakes, volcanic eruptions, floods, landslides, tornados, and tsunamis. Many natural disasters in Indonesia have caused casualties, both fatalities and injuries, destroying the surrounding area and destroying infrastructure and causing property losses. The trend of increasing incidence of natural disasters needs to be further investigated to prevent the number of victims from increasing. This information can be obtained through a data mining approach given the large amount of data available. In relation to natural disaster data, clustering techniques in data mining are very useful for grouping natural disaster data based on the same characteristics so that the data can be adopted as a groundwork for predicting natural disaster events in the future. Thus, this research is supposed to group natural disaster data using clustering techniques using the k-means algorithm into several groups, in terms of natural disaster types, time of disaster, number of victims, and damage to various facilities as a result of natural disasters

Publisher

STMIK Budi Darma

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3