Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung

Author:

Utomo Dito Putro,Mesran Mesran

Abstract

Heart disease is a disease with a high mortality rate, there are 12 million deaths each year worldwide. This is what causes the need for early diagnosis to find out the heart disease. But the process of diagnosis is quite challenging because of the complex relationship between the attributes of heart disease. So it is important to know the main attributes that are used as a decision making process or the classification process in heart disease. In this study the dataset used has 57 types of attributes in it. So that reduction is needed to shorten the diagnostic process, the reduction process can be carried out using the Principal Component Analysis (PCA) method. The PCA method itself can be combined with data mining calcification techniques to measure the accuracy of the dataset. This study compares the accuracy rate using the C5.0 algorithm and the Naïve Bayes Classifier (NBC) algorithm, the results obtained both after and before the reduction are Naïve Bayes Classifier (NBC) algorithms that have better performance than the C5.0 algorithm

Publisher

STMIK Budi Darma

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comparative analysis of data normalization on data mining classification performance;AIP Conference Proceedings;2024

2. Neural Network for Classification of Student Performance in Exams;2023 Eighth International Conference on Informatics and Computing (ICIC);2023-12-08

3. Implementation K-Nearest Neighbor Algorithm Skin Diseases Classifier;2023 International Seminar on Application for Technology of Information and Communication (iSemantic);2023-09-16

4. Predicting Tuition Fees for University of Raharja Students Using Artificial Intelligence;2022 IEEE Creative Communication and Innovative Technology (ICCIT);2022-11-22

5. PENERAPAN ALGORITMA K-NEAREST NEIGHBOR UNTUK KLASIFIKASI PENYAKIT DIABETES MELITUS;Antivirus : Jurnal Ilmiah Teknik Informatika;2022-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3