Studi Komparasi Metode Analisis Sentimen Naïve Bayes, SVM, dan Logistic Regression Pada Piala Dunia 2022

Author:

Anbari Muhamad Zaki,Sugiantoro Bambang

Abstract

The world cup is the most popular sporting event in the world. The 2022 World Cup will be held for the first time in the Middle East, in the country of Qatar to be precise. Its implementation was colored by various controversies ranging from human rights issues, LGBT+ issues, issues of alcoholic beverages, and so on which were so busy in the mainstream media. Various sentiments and opinions have emerged on social media regarding the implementation of the world cup, some have positive opinions and some have negative ones. Sentiment analysis was carried out to find out the main opinions that are developing in society regarding the 2022 world cup, the results can then be used as input and consideration for policy makers. This study uses the snscrape library running on the Python programming language to collect tweets related to the 2022 World Cup on the Twitter social media platform on the first day of the World Cup. The collected data then enters the pre-processing, splitting, TF-IDF stage, before it is ready to be used for modeling. The method used in this research is Bernouli Naïve Bayes, Support Vector Machine, and Logistic Regression. The evaluation results show that the Bernouli Naïve Bayes method produces a precision parameter value of 71%, a recall parameter of 99%, and an accuracy of 76%. While the Support Vector Classifier method produces precision parameter values of 94%, 93% recall parameters, and 92% accuracy. The Logistic Regression method produces a precision parameter value of 93%, a recall parameter of 93%, and an accuracy of 92%.

Publisher

STMIK Budi Darma

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3