Modelling of Adsorption of Methane, Nitrogen, Carbon Dioxide, Their Binary Mixtures, and Their Ternary Mixture on Activated Carbons Using Artificial Neural Network

Author:

Barki Hadjer1,Khaouane Latifa1,Hanini Salah1

Affiliation:

1. Faculty of Technology, University of Médéa, LBMPT Laboratory

Abstract

This work examines the use of neural networks in modelling the adsorption process of gas mixtures (CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>) on different activated carbons. Seven feed-forward neural network models, characterized by different structures, were constructed with the aim of predicting the adsorption of gas mixtures. A set of 417, 625, 143, 87, 64, 64, and 40 data points for NN1 to NN7, respectively, were used to test the neural networks. Of the total data, 60 %, 20 %, and 20 % were used, respectively, for training, validation, and testing of the seven models. Results show a good fit between the predicted and experimental values for each model; good correlations were found (<i>R</i> = 0.99656 for NN1, <i>R</i> = 0.99284 for NN2, <i>R</i> = 0.99388 for NN3, <i>R</i> = 0.99639 for <i>Q</i><sub>1</sub> for NN4, <i>R</i> = 0.99472 for <i>Q</i><sub>2</sub> for NN4, R = 0.99716 for <i>Q</i><sub>1</sub> for NN5, <i>R</i> = 0.99752 for <i>Q</i><sub>3</sub> for NN5, <i>R</i> = 0.99746 for <i>Q</i><sub>2</sub> for NN6, <i>R</i> = 0.99783 for <i>Q</i><sub>3</sub> for NN6, <i>R</i> = 0.9946 for <i>Q</i><sub>1</sub> for NN7, <i>R</i> = 0.99089 for <i>Q</i><sub>2</sub> for NN7, and <i>R</i> = 0.9947 for <i>Q</i><sub>3</sub> for NN7). Moreover, the comparison between the predicted results and the classical models (Gibbs model, Generalized dual-site Langmuir model, and Ideal Adsorption Solution Theory) shows that the neural network models gave far better results.

Publisher

Croatian Society of Chemical Engineers/HDKI

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3