Influence of Sparger Type and Regime of Fluid on Biomass and Lipid Productivity of Chlorella vulgaris Culture in a Pilot Airlift Photobioreactor

Author:

Lopez-Hernandez Yaremi1,Orozco Carlos1,Garcia-Peña Ines1,Ramirez-Muñoz Jorge2,Torres Luis1ORCID

Affiliation:

1. UPIBI-Instituto Politecnico Nacional

2. UAM-Azcapozalco

Abstract

The effect of different types of spargers and the influence of the air flow rate on biomass and lipids production by Chlorella vulgaris was evaluated. These data allowed correlation of the hydrodynamic behavior of the photobioreactor with the byproducts production. The hydrodynamic characterization was developed by determining the mixing time (tM), hold-up, and total volumetric mass transfer coefficient of CO2, kLa(CO2)T, at increasing air flow rates for three different spargers: star-shaped, cross-shaped and porous glass surface sparger. The hydrodynamic characterization showed that the tM decreased, while the hold-up values and the kLa(CO2)T increased as a result of the increment in the volumetric air flow rate between 5 to 17 L min–1. The highest biomass and lipid concentrations were determined at the higher aeration rate (20 L min–1), which was correlated with the lower tM, the higher hold-up and kLa(CO2)T values. Biomass and lipid production showed an inverse correlation. The highest biomass concentration (750 mg L–1) and the lowest lipid concentration (10 mg L–1) were measured with the star sparger. In contrast, when the lowest biomass concentration was obtained (240 mg L–1), the highest lipid concentration of 196 mg L–1 was measured with the glass sparger. The maximum biomass productivity values were determined at the lower aeration rate and the star sparger, with the minimum power per unit of volume, which could be useful for a cost-effective process.

Publisher

Croatian Society of Chemical Engineers/HDKI

Subject

Process Chemistry and Technology,General Chemistry,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3