Artificial Neural Network and Support Vector Regression Applied in Quantitative Structure-property Relationship Modelling of Solubility of Solid Solutes in Supercritical CO2

Author:

Moussaoui Mohammed1,Laidi Maamar2,Hanini Salah3,Hentabli Mohamed4ORCID

Affiliation:

1. Bouira University

2. Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of Médéa

3. Faculty of Technology, University of Médéa, LBMPT Laboratory

4. Laboratory Quality Control, Physico-chemical Department, SAIDAL of Medea

Abstract

In this study, the solubility of 145 solid solutes in supercritical CO<sub>2</sub> (scCO<sub>2</sub>) was correlated using computational intelligence techniques based on Quantitative Structure-Property Relationship (QSPR) models. A database of 3637 solubility values has been collected from previously published papers. Dragon software was used to calculate molecular descriptors of 145 solid systems. The genetic algorithm (GA) was implemented to optimise the subset of the significantly contributed descriptors. The overall average absolute relative deviation MAARD of about 1.345 % between experimental and calculated values by support vector regress SVR-QSPR model was obtained to predict the solubility of 145 solid solutes in supercritical CO<sub>2</sub>, which is better than that obtained using ANN-QSPR model of 2.772 %. The results show that the developed SVR-QSPR model is more accurate and can be used as an alternative powerful modelling tool for QSAR studies of the solubility of solid solutes in supercritical carbon dioxide (scCO<sub>2</sub>). The accuracy of the proposed model was evaluated using statistical analysis by comparing the results with other models reported in the literature.

Publisher

Croatian Society of Chemical Engineers/HDKI

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3