Abstract
Image colorization is the process of taking an input gray- scale (black and white) image and then producing an output colorized image that represents the semantic color tones of the input. Since the past few years, the process of automatic image colorization has been of significant interest and a lot of progress has been made in the field by various researchers. Image colorization finds its application in many domains including medical imaging, restoration of historical documents, etc. There have been different approaches to solve this problem using Convolutional Neural Networks as well as Generative Adversarial Networks. These colorization networks are not only based on different architectures but also are tested on varied data sets. This paper aims to cover some of these proposed approaches through different techniques. The results between the generative models and traditional deep neural networks are compared along with presenting the current limitations in those. The paper proposes a summarized view of past and current advances in the field of image colorization contributed by different authors and researchers.
Publisher
The World Academy of Research in Science and Engineering
Subject
Electrical and Electronic Engineering,Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献