Restaurant Recommendation System using Machine Learning

Author:

Abstract

Nowadays a big challenge when going out to a new restaurant or cafe, people usually use websites or applications to look up nearby places and then choose one based on an average rating. But most of the time the average rating isn't enough to predict the quality or hygiene of the restaurant. Different people have different perspectives and priorities when evaluating a restaurant. Many online businesses now have implemented personalized recommendation systems which basically try to identify user preferences and then provide relevant products to enhance the users experience . In turn, users will be able to enjoy exploring what they might like with convenience and ease because of the recommendation results. Finding an ideal restaurant can be a struggle because the mainstream recommender apps have not yet adopted the personalized recommender approach. So we took up this challenge and we aim to build the prototype of a personalized recommender system that incorporates metadata which is basically the information provided by interactions of customers and restaurants online(reviews), which gives a pretty good idea of customers satisfaction and taste as well as features of the restaurant. This type of approach enhances user experience of finding a restaurant that suits their taste better. This paper has used a package called lightfm(the library of python for implementing popular recommendation algorithms) and the dataset from yelp. There are different methods of filtering the data, here we have used Hybrid filtering which is a combination of Content-based filtering (CBF) and Collaborative Filtering (CF). Since the results from Hybrid filtering are far more closer to accuracy than CBF or CF respectively. Then hybrid filtering gives results in the form of personalized recommendations for users after training and testing of the data

Publisher

The World Academy of Research in Science and Engineering

Subject

Electrical and Electronic Engineering,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recommendation System for Surplus Food Management using Location based and Collaborative Filtering Approach;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

2. Consumer Preference Analysis and Rating Prediction Model in the Restaurant Industry Based on Restaurant Information and Consumer Reviews;Proceedings of the 3rd International Conference on Economic Development and Business Culture (ICEDBC 2023);2023-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3