Volume-Adaptive Big Data Model for Relational Databases

Author:

Abstract

Big data is traditionally associated with distributed systems and this is understandable given that the volume dimension of Big Data appears to be best accommodated by the continuous addition of resources over a distributed network rather than the continuous upgrade of a central storage resource. Based on this implementation context, non- distributed relational database models are considered volume-inefficient and a departure from their usage contemplated by the database community. Distributed systems depend on data partitioning to determine chunks of related data and where in storage they can be accommodated. In existing Database Management Systems (DBMS), data partitioning is automated which in the opinion of this paper does not give the best results since partitioning is an NP-hard problem in terms of algorithmic time complexity. The NP-hardness is shown to be reduced by a partitioning strategy that relies on the discretion of the programmer which is more effective and flexible though requires extra coding effort. NP-hard problems are solved more effectively by a combination of discretion rather than full automation. In this paper, the partitioning process is reviewed and a programmer-based partitioning strategy implemented for an application with a relational DBMS backend. By doing this, the relational DBMS is made adaptive in the volume dimension of big data. The ACID properties (atomicity, consistency, isolation, and durability) of the relational database model which constitutes a major attraction especially for applications that process transactions is thus harnessed. On a more general note, the results of this research suggest that databases can be made adaptive in the areas of their weaknesses as a one-size-fits- all database management system may no longer be feasible.

Publisher

The World Academy of Research in Science and Engineering

Subject

Electrical and Electronic Engineering,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seamless Transition: Migrating from Relational Databases to Document-Oriented Databases;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3