Getting Trapped in Technical Debt: Sociotechnical Analysis of a Legacy System’s Replacement

Author:

Rinta-Kahila TapaniORCID, ,Penttinen EskoORCID,Lyytinen KalleORCID, ,

Abstract

Organizations replace their legacy systems for technical, economic, and operational reasons. Replacement is a risky proposition, as high levels of technical and social inertia make these systems hard to withdraw. Failure to fully replace systems results in complex system architectures involving manifold hidden dependencies that carry technical debt. To understand how a process for replacing a complex legacy system unfolds and accumulates technical debt, we conducted an explanatory case study at a local manufacturing site that had struggled to replace its mission-critical legacy systems as part of the larger global company’s commercial-off-the-shelf (COTS) system implementation. We approach the replacement as a sociotechnical change and leverage the punctuated sociotechnical information system change model in combination with the design-moves framework to analyze how the site balanced creating digital options, countering social inertia, and managing (architectural) technical debt. The findings generalize to a two-level (local/global) system-dynamics model delineating how replacing a deeply entrenched mission-critical system generates positive and negative feedback loops within and between social and technical changes at local and global levels. The loops, unless addressed, accrue technical debt that hinders legacy system discontinuance and gradually locks the organization into a debt-constrained state. The model helps managers anticipate challenges that accompany replacing highly entrenched systems and formulate effective strategies to address them.

Publisher

MIS Quarterly

Subject

Information Systems and Management,Computer Science Applications,Information Systems,Management Information Systems

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3