A Deep Learning Approach for Recognizing Activity of Daily Living (ADL) for Senior Care: Exploiting Interaction Dependency and Temporal Patterns

Author:

Zhu HongyiORCID,Samtani Sagar,Brown RandallORCID,Chen Hsinchun

Abstract

Ensuring the health and safety of senior citizens who live alone is a growing societal concern. The Activity of Daily Living (ADL) approach is a common means to monitor disease progression and the ability of these individuals to care for themselves. However, the prevailing sensor-based ADL monitoring systems primarily rely on wearable motion sensors, capture insufficient information for accurate ADL recognition, and do not provide a comprehensive understanding of ADLs at different granularities. Current healthcare IS and mobile analytics research focuses on studying the system, device, and provided services, and is in need of an end-to-end solution to comprehensively recognize ADLs based on mobile sensor data. This study adopts the design science paradigm and employs advanced deep learning algorithms to develop a novel hierarchical, multiphase ADL recognition framework to model ADLs at different granularities. We propose a novel 2D interaction kernel for convolutional neural networks to leverage interactions between human and object motion sensors. We rigorously evaluate each proposed module and the entire framework against state-of-the-art benchmarks (e.g., support vector machines, DeepConvLSTM, hidden Markov models, and topic-modeling-based ADLR) on two real-life motion sensor datasets that consist of ADLs at varying granularities: Opportunity and INTER. Results and a case study demonstrate that our framework can recognize ADLs at different levels more accurately. We discuss how stakeholders can further benefit from our proposed framework. Beyond demonstrating practical utility, we discuss contributions to the IS knowledge base for future design science-based cybersecurity, healthcare, and mobile analytics applications.

Publisher

MIS Quarterly

Subject

Information Systems and Management,Computer Science Applications,Information Systems,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3