Understanding Medication Nonadherence from Social Media: A Sentiment-Enriched Deep Learning Approach

Author:

Xie JiahengORCID, ,Liu XiaoORCID,Zeng Daniel DajunORCID,Fang XiaoORCID, , , ,

Abstract

Medication nonadherence (MNA) causes severe health ramifications and costs the U.S. healthcare systems $290 billion annually. Understanding patients’ MNA reasons is an urgent goal for researchers, practitioners, and the pharmaceutical industry to mitigate those health and economic consequences. Past years have witnessed soaring patient engagement in social media, making it a cost-efficient and rich information source that can complement prior survey studies and deepen the understanding of MNA. Yet, such a dataset is untapped in existing MNA studies due to technical challenges such as negative decision-making in long texts, varied patient vocabulary, and sparse relevant information. In this work, we develop Sentiment-Enriched DEep Learning (SEDEL) to address these challenges and extract MNA reasons. We evaluate SEDEL on 53,180 reviews of about 180 drugs and achieve a precision of 89.25%, a recall of 88.48%, and an F1 score of 88.86%. SEDEL significantly outperforms the state-of-the-art baseline models. Nine categories of MNA reasons are identified and verified by domain experts. This study contributes to IS research in two aspects. First, we devise a novel deep-learning-based approach for reason mining. Second, our results provide direct implications for the health industry and practitioners to design interventions.

Publisher

MIS Quarterly

Subject

Information Systems and Management,Computer Science Applications,Information Systems,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3