Extracting Actionable Insights from Text Data: A Stable Topic Model Approach

Author:

Yang YiORCID, ,Subramanyam RamanathORCID,

Abstract

Topic models are becoming a frequently employed tool in the empirical methods repertoire of information systems and management scholars. Given textual corpora, such as consumer reviews and online discussion forums, researchers and business practitioners often use topic modeling to either explore data in an unsupervised fashion or generate variables of interest for subsequent econometric analysis. However, one important concern stems from the fact that topic models can be notorious for their instability, i.e., the generated results could be inconsistent and irreproducible at different times, even on the same dataset. Therefore, researchers might arrive at potentially unreliable results regarding the theoretical relationships that they are testing or developing. In this paper, we attempt to highlight this problem and suggest a potential approach to addressing it. First, we empirically define and evaluate the stability problem of topic models using four textual datasets. Next, to alleviate the problem and with the goal of extracting actionable insights from textual data, we propose a new method, Stable LDA, which incorporates topical word clusters into the topic model to steer the model inference toward consistent results. We show that the proposed Stable LDA approach can significantly improve model stability while maintaining or even improving the topic model quality. Further, employing two case studies related to an online knowledge community and online consumer reviews, we demonstrate that the variables generated from Stable LDA can lead to more consistent estimations in econometric analyses. We believe that our work can further enhance management scholars’ collective toolkit to analyze ever-growing textual data.

Publisher

MIS Quarterly

Subject

Information Systems and Management,Computer Science Applications,Information Systems,Management Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3