Depicting Risk Profile over Time: A Novel Multiperiod Loan Default Prediction Approach

Author:

,Wang ZhaoORCID,Jiang CuiqingORCID, ,Zhao HuiminORCID,

Abstract

With the rapid development of fintech, the need for dynamic credit risk evaluation is becoming increasingly important. While previous studies on credit scoring have mostly focused on single-period loan default prediction, we call for a new avenue—multiperiod default prediction (MPDP)—to depict risk profiles over time. To address the challenges raised by MPDP, such as monotonic default probability prediction and complex relationship accommodation, we propose a novel approach, hybrid and collective scoring (HACS). We design a hybrid modeling strategy to predict whether and when a borrower will default separately through a default discrimination model and a default time estimation model, respectively, and synthesize them through a probabilistic framework. To accommodate various possible patterns of default time and measure the distribution of default probability over successive time intervals, we propose a joint default modeling method to train the default time estimation model. Empirical evaluations at the model (time-to-default prediction performance and discrimination performance) and mechanism (identifiability and discriminability) levels, as well as impact analyses at the application (granting performance and profitability performance) level, show that HACS outperforms the benchmarked survival analysis and multilabel learning methods on all fronts. It can more accurately predict time-to-default and provide financial institutions and investors better decision-support in granting loans and selecting loan portfolios.

Publisher

MIS Quarterly

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3