Curriculum Analytics of Course Choices:

Author:

Srivastava NamrataORCID,Nawaz SadiaORCID,Tsai Yi-ShanORCID,Gašević DraganORCID

Abstract

In a higher education context, students are expected to take charge of their learning by deciding “what” to learn and “how” to learn. While the learning analytics (LA) community has seen increasing research on the “how” to learn part (i.e., researching methods for supporting students in their learning journey), the “what” to learn part is still underinvestigated. We present a case study of curriculum analytics and its application to a dataset of 243 students of the bachelor’s program in the broad discipline of health sciences to explore the effects of course choices on students’ academic performance. Using curriculum metrics such as grading stringency, course temporal position, and duration, we investigated how course choices differed between high- and low-performing students using both temporal and sequential analysis methods. We found that high-performing students were likely to pick an elective course of low difficulty. It appeared that these students were more strategic in terms of their course choices than their low-performing peers. Generally, low-performing students seemed to have made suboptimal choices when selecting elective courses; e.g., when they picked an elective course of high difficulty, they were less likely to pick a following course of low difficulty. The findings of this study have design implications for researchers, program directors, and coordinators, because they can use the results to (i) update the course sequencing, (ii) guide students about course choices based on their current GPA (such as through course recommendation dashboards), (iii) identify bottleneck courses, and (iv) assist higher education institutions in planning a more balanced course roadmap to help students manage their workload effectively.

Publisher

Society for Learning Analytics Research

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Curriculum analytics in higher education institutions: a systematic literature review;Journal of Computing in Higher Education;2024-08-23

2. Gaining Insights into Group-Level Course Difficulty via Differential Course Functioning;Proceedings of the Eleventh ACM Conference on Learning @ Scale;2024-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3