Enriching Multimodal Data

Author:

Zhou YiqiuORCID,Kang JinaORCID

Abstract

Collaboration is a complex, multidimensional process; however, details of how multimodal features intersect and mediate group interactions have not been fully unpacked. Characterizing and analyzing the temporal patterns based on multimodal features is a challenging yet important work to advance our understanding of computer-supported collaborative learning (CSCL). This paper highlights the affordances, as well as the limitations, of different temporal approaches in terms of analyzing multimodal data. To tackle the remaining challenges, we present an empirical example of multimodal temporal analysis that leverages multi-level vector autoregression (mlVAR) to identify temporal patterns of the collaborative problem-solving (CPS) process in an immersive astronomy simulation. We extend previous research on joint attention with a particular focus on the added value from a multimodal, temporal account of the CPS process. We incorporate verbal discussion to contextualize joint attention, examine the sequential and contemporaneous associations between them, and identify significant differences in temporal patterns between low- and high-achieving groups. Our paper does the following: 1) creates interpretable multimodal group interaction patterns, 2) advances understanding of CPS through examination of verbal and non-verbal interactions, and 3) demonstrates the added value of a complete account of temporality including both duration and sequential order.

Publisher

Society for Learning Analytics Research

Subject

Computer Science Applications,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3