Author:
O'Connell Kyle Anthony,Wostl Elijah,Crosslin Matt,Berry T. Lisa,Grover James P.
Abstract
Historical student data can help elucidate the factors that promote student success in mathematics courses. Herein we use both multiple regression and principal component analyses to explore ten years of historical data from over 20,000 students in an introductory college-level Algebra course in an urban American research university with a diverse student population in order to understand the relationship between course success and student performance in previous courses, student demographic background, and time spent on coursework. We find that indicators of students’ past performance and experience, including grade-point-average and the number of accumulated credit hours, best predict student success in this course. We also find that overall final grades are representative of the entire course and are not unduly weighted by any one topic. Furthermore, the amount of time spent working on assignments led to improved grade outcomes. With these baseline data, our team plans to design targeted interventions that can increase rates of student success in future courses.
Publisher
Society for Learning Analytics Research
Subject
Computer Science Applications,Education
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献