Author:
Khalil Mohammad,Ebner Martin
Abstract
Learning Analytics has reserved its position as an important field in the educational sector. However, the large-scale collection, processing and analyzing of data have steered the wheel beyond the border lines and faced an abundance of ethical breaches and constraints. Revealing learners’ personal information and attitudes, as well as their activities, are major aspects that lead to personally identify individuals. Yet, de-identification can keep the process of Learning Analytics in progress while reducing the risk of inadvertent disclosure of learners’ identities. In this paper, the authors talk about de-identification methods in the context of learning environment and propose a first prototype conceptual approach that describes the combination of anonymization strategies and Learning Analytics techniques.
Publisher
Society for Learning Analytics Research
Subject
Computer Science Applications,Education
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献