1. Vapnik, V.N. and Chervonenkis, A.Ya. (1974), Teoriya raspoznavaniya obrazov(statisticheskieprob-lemy obucheniya) [Pattern recognition theory (statistical learning problems)], Nauka, Moscow, USSR.
2. Merkov, A.B. (2019), Raspoznavanie obrazov: vvedenie v metody statisticheskogo obucheniya [Pattern Recognition: An Introduction to Statistical Learning Methods], 2nd ed., URSS, Moscow, RUS.
3. Minsky, M. and Papert, S. (1971), Perceptron. An Introduction to Computational Geometry, Transl. by Glimel'farb, G.L. and Sharypanov, V.M. in Kovalevskii, V.A. (ed.), Mir, Moscow, USSR.
4. Potapov, A.S. (2007), Raspoznavanie obrazov i mashinnoe vospriyatie: obshchii podkhod na osnove printsipa minimal'noi dliny opisaniya [Pattern recognition and machine perception: a general approach based on the principle of minimum description length], Politekhnika, SPb., RUS.
5. Polyakov, О.М. (2019), "Linguistic Data Model for Natural Languages and Artificial Intelligence. Part 1. Categorization", DISCOURSE, vol. 5, no. 4, pp. 102-114. DOI: 10.32603/2412-8562-2019-5-4-102-114.