Affiliation:
1. Saint Petersburg Electrotechnical University
Abstract
Introduction. X-ray inspection plays a unique role among all nondestructive testing methods for products and materials due to sufficiently high resolution and high penetrability. The present study is designed to consider the key features of microfocus X-ray sources, their areas of application, and main technical characteristics.Aim. The paper aims to systematize information and review modern X-ray radiation sources for the implementation of microfocus radiography.Materials and methods. The main designs of microfocus X-ray tubes (soldered and demountable) were considered relying on the experience of the St Petersburg State Electrotechnical University in developing and operating such equipment, as well as the experience and open-access publications of foreign researchers and developers. Data collected by leading research teams over the last ten years were analyzed.Results. The paper presents design features for each main type of microfocus X-ray tubes – soldered and demountable. All key structural elements are considered: an anode assembly, a cathode assembly, and a focusing system. The influence of anode target material on the X-ray tube radiation spectrum is shown. An original design of a liquid-anode microfocus X-ray tube is described to demonstrate its key features and advantages. In addition, the paper gives an overview of cathodes used in microfocus X-ray tubes (tungsten cathode and lanthanum hexaboride cathode), as well as providing a detailed description of calculations performed for focusing systems. Finally, the designs of modern X-ray tubes are presented.Conclusion. Modern X-ray tubes are high-tech products that allow for high-resolution research of various objects. The main advantage of testing performed with the use of X-ray tubes consists in high resolution (micron and submicron). The X-ray images of test objects used to determine their spatial resolution are given, which clearly illustrate the vast possibilities of this technology. In addition, ways to improve microfocus X-ray tubes are briefly discussed. The considered materials can be useful in selecting a nondestructive testing tool, as well as in developing and creating X-ray systems on the basis of microfocus X-ray tubes.
Publisher
St. Petersburg Electrotechnical University LETI
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献