Investigation of a Nonlinear XNOR Logic Gate Based on an Induced Nonlinear Phase Shift of Spin Waves

Author:

Haponchyk R. V.1ORCID,Tatsenko I. Yu.1ORCID,Vitko V. V.1ORCID,Stashkevich A. A.2,Goto T.3ORCID,Ustinov A. B.4ORCID

Affiliation:

1. Saint Petersburg Electrotechnical University

2. Université Sorbonne Paris Nord

3. Tohoku University

4. Saint Petersburg Electrotechnical University

Abstract

Introduction. Recent years have seen a growing interest in studying the nonlinear properties of spin waves. Nonlinear phenomena, such as envelope solitons, nonlinear frequency shifts of intense spin waves, and etc., have attracted particular attention. However, a number of important issues remain to be underexplored, including the problem of induced nonlinear phase shift of spin waves. The relevance of this problem is related to the need to develop spin-wave logic gates that could be controlled by changing the spin wave phase.Aim. To study a nonlinear XNOR logic gate whose operation is based on the induced nonlinear phase shift of a spin wave.Materials and methods. An original theory is used to simulate the frequency response of a nonlinear XNOR logic gate. The operating principle of the nonlinear XNOR logic gate is substantiated. The possibility of implementing the nonlinear XNOR logic gate in a circuit similar to a spin-wave Mach-Zehnder interferometer is experimentally demonstrated.Results. An experimental study of the induced nonlinear phase shift of operating signals incident on identical nonlinear spin-wave phase shifters located in the arms of the logic gate was carried out. It is shown that an increase in the pump signal power up to 60 mW, supplied to nonlinear phase shifters, changes the induced nonlinear phase shift of the operating signal by more than 180°. Hence, nonlinear phase shifters can be used for constructing spin-wave logic gates. In addition, the operating principle of a spin-wave logic gate was experimentally studied. It is shown that the XNOR logical function is implemented in the low-frequency part of the device’s frequency response characteristic.Conclusion. Numerical simulation of the characteristics of a nonlinear XNOR logic gate based on the Mach-Zehnder interferometer circuit was carried out. It is shown that its logical functions are implemented due to the effect of an induced nonlinear phase shift of spin waves in nonlinear phase shifters located in different arms of the logic gate.

Publisher

St. Petersburg Electrotechnical University LETI

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3