Analytical Models for the Time Response of a Microstrip Line with Two Additional Symmetrical Conductors on Top under Different Boundary Conditions at Their Ends

Author:

Sekenova A.1,Kenzhegulova Z. M.1ORCID,Sagiyeva I. Y.1ORCID,Gazizov T. R.1ORCID

Affiliation:

1. Tomsk State University of Control Systems and Radioelectronics

Abstract

   Introduction. Protection of radio electronic equipment (REA) against various electromagnetic interferences is an important aspect of electromagnetic capability. Among interferences for REA, ultra-short pulses of picosecond and nanosecond ranges represent the highest danger due to their high voltage, short duration, and wide spectrum. One effective protection measure consists in the use of bandpass devices based on modal decomposition, such as modal filters (MF). This requires an analysis of distortion of the temporal response of bandpass devices, which is usually carried out numerically. However, even for simple configurations, this approach is associated with high computational costs. Yet simple analytical time-response models are acceptable in some cases. In the initial design stages, such models are extremely useful in providing a preliminary solution and a rapid assessment of response distortions. Therefore, comparison of time responses obtained by numerical methods and analytical models appears an important research task.   Aim. To compare the time responses obtained by quasi-static analysis and analytical models.   Materials and methods. Analytical models for computing time responses based on a modal analysis technique were considered. A quasi-static modeling of a microstrip line (MSL) with two additional symmetrical conductors on top in the TALGAT system was carried out.   Results. Analytical models are proposed for an MSL with two additional symmetrical conductors on top taking different boundary conditions at their ends into account. The accuracy and reliability of the proposed models are verified by comparing the time responses obtained by quasi-static analysis and the proposed models. The results obtained showed good agreement.   Conclusion. It is shown that an MSL with two additional symmetrical conductors on top can be used as an MF under different boundary conditions at the ends of these conductors. The proposed models allow the shape and amplitude of the response to be estimated with acceptable accuracy, reducing time and computational costs.

Publisher

St. Petersburg Electrotechnical University LETI

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3