Affiliation:
1. Saint Petersburg Electrotechnical University
Abstract
Introduction. Technologies related to the use of low-temperature atmospheric plasmas are developing at a rapid pace. Creation of new low-temperature plasma sources for specific applications requires monitoring of dynamic processes in such discharges with a high time resolution. Electron concentration is one the most important plasma characteristics, which can be very low for a low-temperature atmospheric pressure plasma. However, the methods currently available for diagnostics of gas-discharge plasmas are either characterized by insufficient sensitivity or unable to monitor dynamic processes in non-stationary discharges. In this regard, the development of new diagnostic approaches to low-temperature atmospheric plasma seems to be a relevant research direction.Aim. To develop a diagnostic method for an atmospheric plasma with a low gas temperature and a low electron concentration in a cylindrical microwave resonator.Materials and methods. The proposed diagnostic method is based on the well-known principle of measuring the frequency shift and the Q-factor of the eigenmodes of the microwave resonator, inside which the plasma under study is located.Results. Measurements of the atmospheric barrier discharge plasma jets in a helium and argon stream in a cylindrical microwave resonator were performed. The proposed geometry made it possible to significantly increase the sensitivity of measurements. It became possible to exclude the effect of polarization degeneracy in a round cylindrical resonator. The developed system was also tested on test objects with a known value of permittivity.Conclusion. A method for microwave diagnostics of stationary and non-stationary cold atmospheric plasma jets in a cylindrical resonator, inside which transmitting and receiving antennas are installed, as well as an orthogonal thin conductor preventing the excitation of undesirable modes, was developed.
Publisher
St. Petersburg Electrotechnical University LETI