Optimization of the Weight Processing Algorithm in Multichannel Doppler Filtering

Author:

Koshelev V. I.1ORCID,Trinh Ngoc Hieu1ORCID

Affiliation:

1. Ryazan State Radio Engineering University n. a. V. F. Utkin

Abstract

Introduction. The use of non-equidistant pulse sequences as probing radar signals makes it possible to eliminate blind spots in speed and range. However, the implementation of multi-channel Doppler filtering (MDF) based on the classical fast Fourier transform (FFT) algorithm of non-equidistant signal samples in the signal detection problem is associated with energy losses. The use of modified FFT algorithms increases the efficiency of MDF against the background of white Gaussian noise, while reducing the efficiency of signal accumulation in the part of signal processing channels blocked by the narrow-band clutter. To eliminate this drawback, the authors previously proposed using combined classical and modified FFT algorithms. However, the use of the combined method does not lead to an optimal solution in terms of MDF efficiency.Aim. Optimization of weight processing of non-equidistant signals to improve the efficiency of MDF.Materials and methods. An MDF synthesis was carried out using optimization procedures, and the effectiveness of the algorithms was assessed using computer calculations.Results. The results show that the Kaiser Bessel window with a window parameter of 4.42 provides the highest signal-(clutter+noise) ratio improvement coefficient averaged over frequency channels equal to 30.06 dB and the highest probability of correct signal detection averaged over MDF channels equal to 0.5 at processing of non-equidistant pulse sequences. Optimization of the weight processing of MDF under the specified conditions increased the average efficiency characteristics used of up to 53.18 dB and 0.92, respectively.Conclusion. Separate optimization of weighting processing for each frequency channel can significantly improve the average efficiency characteristics of a multichannel Doppler filter and eliminate all the shortcomings of the classical and modified FFT algorithms when processing non-equidistant pulse sequences. However, these advantages are achieved at the cost of not using the FFT, i.e., implemented within the framework of the discrete Fourier transform (DFT) algorithm.

Publisher

St. Petersburg Electrotechnical University LETI

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3