Systematic Approach to Processing and Analysis Diagnostic Indicators of Electrocardiograms Based on Labview

Author:

Magrupova M. T.1ORCID,Talatov Yo. T.1ORCID

Affiliation:

1. Tashkent State Technical University

Abstract

Introduction. Cardiovascular disease occupies an important place throughout the world, which necessitates the development of more effective modern means of diagnosis and treatment. The primary diagnosis of heart disease is based on analysis and processing of an electrocardiogram (ECG). Despite the fact that there are many methods and algorithms for ECG analysis and processing, one of the urgent problems of cardiology remains to obtain the most complete information about heart electric potential, respectively, the behavior of the waves P, Q, R, S and T.Aim. Development of algorithms and software for processing and analysis of electrocardiograms (ECGs), as well as calculation of heart rate and detection of arrhythmias based on Labview.Materials and methods. The methods for removing noise using the wavelet transform method to eliminate baseline deviation ,to extract ECG signs ,to calculate heart rate and to detect arrhythmias based on Labview have been adopted as a mathematical apparatus for processing and analyzing ECGs.Results. Organizing of the ECG database, developing algorithms for converting the ECG file of the database into a useful format for Labview, processing of the ECG signal with removing noise from the original ECG signal, extracting signs for obtaining ECG diagnostic indicators, calculating heart rate and detecting arrhythmias.Conclusion. An analysis of the results demonstrates that systematic approaches to evaluating ECG signals allow to avoid one-way decisions and to integrate different methods into an integrated system of ideas of the state. The implementation of the proposed algorithms using Labview programming system ensures the removal of noise and artifacts, the extraction of the necessary ECG signs, the calculation of heart contractions and the detection of arrhythmias.

Publisher

St. Petersburg Electrotechnical University LETI

Reference17 articles.

1. Magrupov T. M., Vasil'eva S. A., Magrupova M. T. Analiz i obrabotka medico-biologicheskoi informatsii [Analysis and processing of biomedical information]. Toshkent, TashGTU, 2012. 152 p. (In Russ.)

2. Rangayyan R. M. Biomedical Signal Analysis. 2nd Ed. Wiley-IEEE Press, 2015. 720 p.

3. Baevskii R. M., Ivanov G. G., Chireiki, L. V., Gavrilushkin A. P., Dovgalevskii P. Ya., Kukushkin Yu. A., Mironova T. F., Prilutskii D. A., Semenov A. V., Fedorov V. F., Fleishman A. N., Medvedev M. M. Methodical Recommendations: Analysis of Heart Rate Variability when Using Various Electrocardiographic Systems. Journal of Arrhythmology. 2001, no. 24, pp. 65–87. (In Russ.)

4. Malik M. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation. 1996, vol. 93, iss. 5, pp. 1043–1065.

5. Schuster H. G., Just W. Deterministic Chaos: An Introduction. 4th Ed. Wiley-VCH Verlag, 2005, 287 p. doi: 10.1002/3527604804

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3