Radiation by Transducer of Waveguide Type into Conical Half-Spaces Coaxial With It

Author:

Pesterev I. S.1ORCID,Sosnovsky N. N.2ORCID,Stepanov B. G.2ORCID

Affiliation:

1. State Research Center of the Russian Federation Concern CSRI Elektropribor, JSC

2. Saint Petersburg Electrotechnical University "LETI"

Abstract

Introduction. The present stage of development of hydroacoustic equipment is characterized by a constant improvement of an element base and by an increase in computing power. However, in solving of applied problems one is increasingly faced with a restriction on the realized bandwidth of electroacoustic transducers and antennas. The most of well-known methods of bandwidth expansion do not provide a linear character of the phase-frequency characteristic (PFC) of radiation in the working frequency band, which is of primary importance for the effective formation of relatively short, frequency-tunable, and complex acoustic signals. From this position, the use of a transducer of waveguide type (TWT) is preferential. Its construction and electrical excitation method provides a close to linear phase response of radiation.Aim. The development of a generalized computational model. It has to include particular cases of TWT radiation into cylindrical waveguides coaxial with it and into half-spaces, and also to take into account the influence of waves reflected from the boundaries of the TWT on its field characteristics.Materials and methods. The TWT was presented by a coaxial set of identical water filled piezocylinders with amplitude-phase excitation, provided a mode of broadband radiation in the form of traveling waves. The usage of the method of partial regions allowed one to obtain a solution of the problem of TWT radiation through water filled apertures into the conical adjacent half-spaces, variable in angle.Results. Frequency characteristics of TWT sound pressure results calculated in accordance with the solution of the synthesis problem in the frontal and rear directions for different angles of cone opening were presented and analyzed. Using the proposed computational model of TWT, the possibility of obtaining a bandwidth of the order of 3 octaves was demonstrated. An influence of the thickness of the passive flanges, which are used to link the TWT in the antennas was estimated. The possibility of radiation in the working frequency band of TWT of ultrashort ultra-short single-period pulses for different angles of cone opening was considered. A comparative assessment of the result of calculation with other particular solutions (the radiation by TWT in coaxial water-filled waveguides and also – in half-spaces) was presentedConclusion. An expedient to use a generalized computational model for a more accurate description of the acoustic fields of real antenna models made up of TWT was concluded.

Publisher

St. Petersburg Electrotechnical University LETI

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3