Application of the Non-Hermitian Singular Spectrum Analysis to the Exponential Retrieval Problem

Author:

Nicolsky D. J.1ORCID,Tipenko G. S.2ORCID

Affiliation:

1. Geophysical Institute, University of Alaska Fairbanks

2. Institute of Environmental Geoscience Russian Academy of Sciences

Abstract

Introduction. In practical signal processing and its many applications, researchers and engineers try to find a number of harmonics and their frequencies in a time signal contaminated by noise. In this manuscript we propose a new approach to this problem. Aim. The main goal of this work is to embed the original time series into a set of multi-dimensional information vectors and then use shift-invariance properties of the exponentials. The information vectors are cast into a new basis where the exponentials could be separated from each other. Materials and methods. We derive a stable technique based on the singular value decomposition (SVD) of lagcovariance and cross-covariance matrices consisting of covariance coefficients computed for index translated copies of an original time series. For these matrices a generalized eigenvalue problem is solved. Results. The original time series is mapped into the basis of the generalized eigenvectors and then separated into components. The phase portrait of each component is analyzed by a pattern recognition technique to distinguish between the phase portraits related to exponentials constituting the signal and the noise. A component related to the exponential has a regular structure, its phase portrait resembles a unitary circle/arc. Any commonly used method could be then used to evaluate the frequency associated with the exponential. Conclusion. Efficiency of the proposed and existing methods is compared on the set of examples, including the white Gaussian and auto-regressive model noise. One of the significant benefits of the proposed approach is a way to distinguish false and true frequency estimates by the pattern recognition. Some automatization of the pattern recognition is completed by discarding noise-related components, associated with the eigenvectors that have a modulus less than a certain threshold.

Publisher

St. Petersburg Electrotechnical University LETI

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3