BINARY DATA TRANSMISSION ON CHAOTICALLY FORMED CARRIER FREQUENCIES

Author:

Grebenev Maksim S.1,Kondrashov Alexander V.1,Perepelovsky Vadim V.1

Affiliation:

1. Saint Petersburg Electrotechnical University "LETI"

Abstract

In this paper, the method of binary data transmission and receiving is first suggested and experimentally investigated. The method uses dynamical chaos as a source of multiple carrier frequencies. On the server side, the transmitter configures informational signal in the form of frequency grid with chaotically varying frequencies of the spectrum with their amplitudes corresponding to transmitted information message. On the client side, the transmitted information is re-stored using chaotically selected spectral windows. Synchronization of the server and client dynamic chaos generators is achieved by means of TCP/IP protocol. Suggested method is based on combined transmission of information message via transmission channel and background signal. Power of background signal significantly exceeds power of informational one. The method allows using different informational signal as a background signal, such as voice message. The addition of low power chaotically formed frequency grid signal does not lead to significant background signal formation either in spectral or in time domain. Thus, the described method allows repeated application of the transmission channel. The effect of signal-to noise ratio of the order of the filter implementing the spectral windows in the receiver and the width of the spectral window is investigated. Signal-to-noise ratio can be reduced with increasing filter order and spectral window width.

Publisher

St. Petersburg Electrotechnical University LETI

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3