Analytical Dispersion Theory for Optical Waves in Regular Microwaveguides

Author:

Cheplagin N. A.1,Zaretskaya G. A.1,Kalinikos B. A.1

Affiliation:

1. Saint Petersburg Electrotechnical University "LETI" .

Abstract

A method for analysis of dispersion characteristics of guided optical modes propagating in the optical waveguides with small cross-sections is proposed. The method is based on introduction of a correction factor for a longitudinal wavenumber of propagating modes. The correction factor arises when a cross-section of the basic rectangular waveguide is subjected to perturbation. The electromagnetic field distributions along with the mode longitudinal wavenumber are found by means of variable separation method. The longitudinal wavenumber correction factor is analytically calculated in terms of coupled mode theory. The combined use of the complete set of equations of electrodynamics together with the concept of effective sources gives rise to the correction factor in the form of an intermodal coupling coefficient. It is pointed out that the coupling coefficient consists of two components, namely bulk and surface, owing to accurate account of the electrodynamics boundary conditions. Using the method proposed, the dispersion characteristics of the fundamental modes propagating in the practically employed optical waveguides having a trapezoidal cross-section are calculated. An impact of the waveguide cross-section shape to cladding dielectric constant ratio on the mode dispersion characteristics is analyzed. The necessity to take into consideration an imperfection of the waveguide cross-section in a wide range of operating wavelengths is demonstrated.

Publisher

St. Petersburg Electrotechnical University LETI

Reference21 articles.

1. Capmany J., Novak D. Microwave Photonics Combines Two Worlds. Nature Photonics. 2007, vol. 1, pp. 319–330. doi: 10.1038/nphoton.2007.89.

2. Capmany J. Microwave Photonic Signal Processing. Journal of Lightwave Technology. 2013, vol. 31, no. 4, pp. 571–586. doi: 10.1109/JLT.2012.2222348.

3. Iezekiel S., Burla M., Klamkin J., Marpaung D., Capmany J. RF Engineering Meets Optoelectronics: Progress in Integrated Microwave Photonics. IEEE Microwave Magazine. 2015, vol. 16, no. 8, pp. 28–45. doi: 10. 1109/MMM.2015.2442932.

4. Carpintero G., Balakier K., Yang Z., Guzmán R. C., Corradi A., Jimenez A., Kervella G., Fice M. J., Lamponi M., Chitoui M., van Dijk F., Renaud C. C., Wonfor A., Bente E. A. J. M., Penty R. V., White I. H., Seeds A. J. Microwave Photonic Integrated Circuits for Millimeter-Wave Wireless Communications. Journal of Lightwave Technology. 2014, vol. 32, no. 20, pp. 3495–3501.

5. Zhang W., Yao J. Silicon-Based Integrated Microwave Photonics. IEEE Journal of Quantum Electronics. 2016, vol. 52, no. 1, pp. 1–12. doi: 10.1109/JQE.2015.2501639.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3