Impact of the Radar Image Resolution of Military Objects on the Accuracy of their Classification by a Deep Convolutional Neural Network

Author:

Kupryashkin I. F.1

Affiliation:

1. Military Educational and Scientific Center of the Air Force "N. E. Zhukovsky and Y. A. Gagarin Air Force Academy"

Abstract

Introduction. Deep convolutional neural networks are considered as one of the most promising tools for classifying small-sized objects on radar images. However, no systemic study has been reported so far on the dependence between the classification accuracy achieved by convolutional neural networks and such an important image characteristic as resolution.Aim. Determination of a dependence between of the accuracy of classifying military objects by a deep convolutional neural network and the resolution of their radar images.Materials and methods. An eight-layer convolutional neural network was designed, trained and tested using the Keras library and Tensorflow 2.0 framework. For training and testing, the open part of the standard MSTAR dataset comprising ten classes of military objects radar images was used. The initial weight values of the MobileNetV1 and Xception networks used for a comparative assessment of the achieved classification accuracy were obtained from the training results on the Imagenet.Results. The accuracy of classifying military objects decreases rapidly along with a deterioration in resolution, amounting to 97.91, 90.22, 79.13, 52.2 and 23.68 % at a resolution of 0.3, 0.6, 0.9, 1.5 and 3 m, respectively. It is shown that the use of pretrained MobileNetV1 and Xception networks does not lead to an improvement in the classification accuracy compared to a simple VGG-type network.Conclusion. Effective recognition of military objects at a resolution worse than one meter is practically impossible. The classification accuracy of deep neural networks depends significantly on the difference in the image resolution of the training and test sets. A significant increase in the resistance of the classification accuracy to changes in the resolution can be achieved by training on a set of images with different resolutions.

Publisher

St. Petersburg Electrotechnical University LETI

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HashVFL: Defending Against Data Reconstruction Attacks in Vertical Federated Learning;IEEE Transactions on Information Forensics and Security;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3