Application of a Texture Appearance Model for Segmentation of Lung Nodules on Computed Tomography of the Chest

Author:

Shariaty F.1ORCID,Pavlov V. A.2ORCID,Zavjalov S. V.1ORCID,Orooji M.3ORCID,Pervunina T. M.4ORCID

Affiliation:

1. Peter the Great St. Petersburg Polytechnic University

2. Peter the Great St. Petersburg Polytechnic University; Almazov National Medical Research Centre

3. University of California

4. Almazov National Medical Research Centre

Abstract

Introduction. Lung cancer is one of the most critical diseases globally, with more than 1.6 million new cases registered every year. Early detection of lung cancer is essential; therefore, particular attention should be paid to the development of effective diagnostic and therapeutic procedures. Computer processing of CT scans in the course of lung cancer diagnostics involves the following stages: medical image acquisition, pre-processing of medical images, segmentation, and false-positive reduction. Since segmentation is an essential stage in the process of medical image analysis, the development of novel segmentation approaches is attracting much research interest. Model-based segmentation approaches have recently gained in popularity, largely due to their potential to restore lost information.Aim. To apply a texture appearance model for the segmentation of pulmonary nodules on computed tomography of the chest.Materials and methods. A novel model-based Texture Appearance Model (TAM) is proposed for precise and effective segmentation of all sorts of nodule regions. We taught the TAM for segmentation of a lung nodule in lung CT images using a combination of extracted texture characteristics from CT scans and Texture Representation of Image (TRI).Results. The results of applying the described TAM method to normal and noisy CT images are presented and compared to those obtained using the Region Growing and Active Contour algorithms, as well as the combination of Active Contour and Watershed algorithms. The TAM was tested in 85 nodules from a dataset, yielding an average dice similarity coefficient (DSC) of 84.75 percent.Conclusion. A novel method for segmenting nodules in the lung, which is capable of segmenting all forms of nodules with excellent accuracy, is proposed. This model-based technique, when used with the active loop algorithm, can enhance accuracy and decrease false positives by selecting the initial mask. The precision, dice, accuracy, and specificity of lung nodule segmentation on a normal CT scan are 85.5, 85, 96, and 98, which levels are superior to those produced by the Active Contour, Region Growing and the combination of Active Contour and Watershed algorithms.

Publisher

St. Petersburg Electrotechnical University LETI

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Potential of Brain-Computer Interfaces in Dementia;2023 International Conference on Electrical Engineering and Photonics (EExPolytech);2023-10-19

2. Formation of environmental research competencies of foreign pre-masters’ students for sustainable region development;E3S Web of Conferences;2023

3. A Novel Gene Assay Combined with Medical Imaging for Accurate Prognosis and Prediction of Cancer Type;2022 International Conference on Electrical Engineering and Photonics (EExPolytech);2022-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3