Fatigue in Parkinson’s Disease Is Due to Decreased Efficiency of the Frontal Network: Quantitative EEG Analysis

Author:

Kim Min SeungORCID,Park SangukORCID,Park UkeobORCID,Kang Seung WanORCID,Kang Suk YunORCID

Abstract

Objective Fatigue is a common, debilitating nonmotor symptom of Parkinson’s disease (PD), but its mechanism is poorly understood. We aimed to determine whether electroencephalography (EEG) could objectively measure fatigue and to explore the pathophysiology of fatigue in PD.Methods We studied 32 de novo PD patients who underwent EEG. We compared brain activity between 19 PD patients without fatigue and 13 PD patients with fatigue via EEG power spectra and graphs, including the global efficiency, characteristic path length, clustering coefficient, small-worldness, local efficiency, degree centrality, closeness centrality, and betweenness centrality.Results No significant differences in absolute or relative power were detected between PD patients without or with fatigue (all <i>p</i> > 0.02, Bonferroni-corrected). According to our network analysis, brain network efficiency differed by frequency band. Generally, the brain network in the frontal area for theta and delta bands showed greater efficiency, and in the temporal area, the alpha1 band was less efficient in PD patients without fatigue (<i>p</i> < 0.0001, <i>p</i> = 0.0011, and <i>p</i> = 0.0007, respectively, Bonferroni-corrected).Conclusion Our study suggests that PD patients with fatigue have less efficient networks in the frontal area than PD patients without fatigue. These findings may explain why fatigue is common in PD, a frontostriatal disorder. Increased efficiency in the temporal area in PD patients with fatigue is assumed to be compensatory. Brain network analysis using graph theory is more valuable than power spectrum analysis in revealing the brain mechanism related to fatigue.

Funder

National Research Foundation of Korea

Ministry of Science and ICT

Korea Health Industry Development Institute

Ministry of Health and Welfare

Publisher

The Korean Movement Disorder Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3