How can a design-based research methodology that utilises Mixed-Reality (MR) Technologies be utilized to effectively enhance learning for authentic, high-risk situations?

Author:

Hong Jin

Abstract

Even experienced mountain climbers underestimate key dangers and make poor decisions in stressful, high-risk situations when climbing, leading to injury and death. My own experience indicates that effective education can play a key role in managing these risks and improving experienced climber’s decision making. Current educational approaches for climbers, however, are generally limited to textbooks and ‘on the mountain’ learning. It is vital, therefore, that new approaches and methods are developed to improve learning.    My own experience and emergent case studies indicate that AR (Augmented), VR (Virtual Reality) and MR (Mixed Reality), have affordances (possibilities offered by the technology) to underpin new forms of learning and therefore have the potential to enhance education for high-risk environments. Emergent use of MR immersive technologies includes classroom learning, firefighting and military training. An initial review of literature has indicated though that there are very limited examples of rigorous research on the design and application of MR technologies in authentic education, especially for extreme situations such as mountaineering i.e., no one has rigorously designed for these technologies for learning in extreme environments, evaluated learning outcomes and theorised about how learning can be enhanced.    In response to this gap/opportunity, this research explores the potential of MR technologies to effectively enhance learning for authentic, high-risk situations. The research will use a Design-based research methodology (DBR) to develop design principles informed by key learning theories as they offer recognised and critical approaches for a new way of learning in an extreme environment.  Underpinned by a Constructivist paradigm, initial theoretical frameworks identified include Authentic Learning and Heutagogy (student-determined learning).Herrington and co-authors (2009) recommended 11 design principles for the incorporation of mobile learning into a higher education learning environment, and Blaschke and Hase (2015)’s 10 principles of designing learning for heutagogy. Other theories and frameworks include Constructivist Learning and the ZPD (the Zone of Proximal Development), design for mobile MR learning and user-centred design. Activity Theory will also be utilised in the data analysis.   Initial design principles will be developed by the DBR methodology. These design principles will be tested through the implementation and evaluation of an MR ‘prototype’ app design solution.’ The prototype solution will be iteratively redesigned using further evaluation and feedback from sample cohorts of end-users. Data will be collected from key participant interviews, researcher observation/reflections and biometric feedback. Methodological triangulation (multimodal data approach) will be used to evaluate learning outcomes. The iterative development will lead to transferable design principles and further theorising that can be transferred to other learning situations involving preparation and decision-making as well as knowledge in high-risk contexts.    Reference   Amiel, T., & Reeves, T. (2008). Design-Based Research and Educational Technology:   Rethinking Technology and the Research Agenda. Educational Technology                & Society, 11(4), 29-40.    Blaschke, L., & Hase, S. (2015). Heutagogy, Technology, and Lifelong Learning for Professional   and Part-Time Learners. In A. Dailey-Hebert & K. S. Dennis (Eds.), Transformative Perspectives   and Processes in Higher Education (Vol. 6, pp. 75-94). Switzerland: Springer                   International Publishing.   Cochrane, T., et al., (2017) ‘A DBR framework for designing mobile virtual reality learning  environments’, Australasian Journal of Educational Technology, vol. 33,  6, pp. 27–40. doi: 10.14742/ajet.3613    Engeström, Y. (2015). Learning by expanding: An activity-theoretical approach      to developmental research (2nd ed.). Cambridge, UK: Cambridge University Press.   Hase, S & Kenyon, C. (2001). Moving from andragogy to heutagogy: implications for VET',  Proceedings of Research to Reality: Putting VET Research to Work: Australian  Vocational Education and Training Research Association (AVETRA), Adelaide,  SA, 28-30 March, AVETRA, Crows Nest, NSW.   Kesim, M & Ozarslan (2012), Y. Augmented Reality in Education: Current                 Technologies and the Potential for Education, Procedia - Social and            Vygotsky, L. S. (1978). Mind in society: The development of higher psychological  processes. Cambridge, MA: Harvard University Press.     Behavioral Sciences volume 47, 2012, 297-302.  

Publisher

Auckland University of Technology (AUT) Library

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Entangled cognition in immersive learning experience;Adaptive Behavior;2023-06-26

2. Development of Network-Based Popular Writing Teaching Materials;Proceedings of the Unima International Conference on Social Sciences and Humanities (UNICSSH 2022);2023

3. User Experience of Online Shopping Clothing Display Based on VR Technology;Advances in Intelligent Systems and Computing;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3