Author:
Mubassira Subah,Muna Farhana Islam,Inam Mohammad Ilias
Abstract
This paper presents a two-dimensional Computational Fluid Dynamics (CFD) analysis on the effect of gurney flap on a NACA 4312 airfoil in a subsonic flow. These numerical simulations were conducted for flap heights 1.5%, 1.75%, 2% and 3% of chord length at fixed Reynold Number, Re (5×105) for different angle of attack (0o ~16o). ANSYS Fluent commercial software was used to conduct these simulations. The flow was considered as incompressible and K-omega Shear Stress Transport (SST) model was selected. The numerical results demonstrate that lift coefficient increase up to around 12o AoA (angle of attack) for NACA 4312 with and without gurney flap. For every AoA lift coefficient and drag coefficient presented proportionate behavior with flap height. However, lift co-efficient was decreased after around angle of attack due to flow separation. Maximum lift to drag ratio was found at around 4o AoA for every flap length and airfoil with flap of 1.5%C (chord length) had shown the most optimized aerodynamic performance through the analysis. This study concluded that airfoil with gurney flap displayed enhanced aerodynamic performance than the airfoil without gurney flap due to the delay in flow separation.
Reference22 articles.
1. Kumar, A., Chaubdar, P., Sinha, G.S. and Harichandan, A.B., 2021. Performance Analysis of NACA4412 Airfoil with Gurney Flap. In Proceedings of International Conference on Thermofluids (pp. 167-176). Springer, Singapore.
2. Jang, C.S., Ross, J.C. and Cummings, R.M., 1998. Numerical investigation of an airfoil with a Gurney flap. Aircraft Design, 1(2), pp.75-88.
3. Fatahian, H., Salarian, H., Nimvari, M.E. and Khaleghinia, J., 2020. Effect of Gurney flap on flow separation and aerodynamic performance of an airfoil under rain and icing conditions. Acta Mechanica Sinica, pp.1-19.
4. Liebeck, R.H., 1978. Design of subsonic airfoils for high lift. Journal of Aircraft, 15(9), pp.547-561.
5. Neuhart, D.H., 1988. A water tunnel study of Gurney flaps (Vol. 4071). National Aeronautics and Space Administration, Scientific and Technical Information Division.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献