Author:
Uddin Mahtab,Uddin M. Monir,Khan M. A. Hakim,Hossain M. Tanzim
Abstract
We propose an efficient sparsity-preserving reduced-order modelling approach for index-1 descriptor systems extracted from large-scale power system models through two-sided projection techniques. The projectors are configured by utilizing Gramian based singular value decomposition (SVD) and Krylov subspace-based reduced-order modelling. The left projector is attained from the observability Gramian of the system by the low-rank alternating direction implicit (LR-ADI) technique and the right projector is attained by the iterative rational Krylov algorithm (IRKA). The classical LR-ADI technique is not suitable for solving Riccati equations and it demands high computation time for convergence. Besides, in most of the cases, reduced-order models achieved by the basic IRKA are not stable and the Riccati equations connected to them have no finite solution. Moreover, the conventional LR-ADI and IRKA approach not preserves the sparse form of the index-1 descriptor systems, which is an essential requirement for feasible simulations. To overcome those drawbacks, the fitting of LR-ADI and IRKA based projectors from left and right sides, respectively, desired reduced-order systems attained. So that, finite solution of low-rank Riccati equations, and corresponding feedback matrix can be executed. Using the mechanism of inverse projection, the Riccati-based optimal feedback matrix can be computed to stabilize the unstable power system models. The proposed approach will maintain minimized ℌ2 -norm of the error system for reduced-order models of the target models.
Reference24 articles.
1. Hossain, M.S. and Uddin, M.M., 2019. Iterative methods for solving large sparse Lyapunov equations and application to model reduction of index 1 differential-algebraic equations. Numerical Algebra, Control & Optimization, 9(2), p.173.
2. Benner, P., Saak, J. and Uddin, M.M., 2016, December. Reduced-order modeling of index-1 vibrational systems using interpolatory projections. In 2016 19th International Conference on Computer and Information Technology (ICCIT) (pp.134-138). IEEE.
3. Uddin, M.M., 2015. Computational methods for model reduction of large-scale sparse structured descriptor systems (Doctoral dissertation, Otto-von Guericke Universita ̈t Magdeburg).
4. Benner, P., Saak, J. and Uddin, M.M., 2016. Structure preserving model order reduction of large sparse second-order index-1 systems and application to a mechatronics model. Mathematical and Computer Modelling of Dynamical Systems, 22(6), pp.509-523.
5. Rahman, M., Uddin, M.M., Andallah, L.S. and Uddin, M., 2020. Interpolatory Projection Techniques for H_2 Optimal Structure-Preserving Model Order Reduction of Second-Order Systems. Advances in Science, Technology and Engineering Systems Journal, 5(4), pp.715-723.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献