Heat Transfer Characteristics Analysis of a Nanofluid in a Tube with a Co-axial Twisted Tape Inserter: A Numerical Approach

Author:

Alam Tasnimul,Inam Mohammad Ilias

Abstract

This study demonstrates the forced convection heat transfer of a water-based nanofluid inside a circular tube with a twisted tape inserter. During these simulations, it was assumed that the tube wall heated with constant heat flux, inlet of the tube had a lower temperature and Titanium Oxide (TiO2) particles were used as nanoparticles for nanofluid mixture. The results depict the effect of some significant parameters, i.e., twist ratio (T.R.), number of twists, Reynolds number, and volume fractions of nanoparticles on the heat transfer characteristics inside the tube with a twisted tape inserter. It is visualized from the numerical results that the Nusselt number (Nu) and heat transfer co-efficient have higher values at the twisted region than the outlet. During this numerical simulation, the Reynolds number (Re), volume fractions of particles, and twist ratios were varied into the range from 100 to 500, 0 to 0.1, and 1 to 5, respectively. Mixture model conducted these numerical simulations with Direct Numerical Simulation (DNS) method using ANSYS Fluent 16.2 with the help of three-dimensional Navier-Stokes equation. The results depicted for both water and nanofluid, the average Nusselt number and heat transfer co-efficient enhance at lower twist ratios and a higher number of twists. Results also show that Nusselt number and heat transfer coefficient increase with Reynolds Number. The heat transfer characteristics of twisted-tape inserter portion and their differences of those characteristics with the tube outlet were investigated numerically and graphically.

Publisher

SciEnPG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3