The action of ten secreted aspartic proteases of pathogenic yeast Candida albicans on major human salivary antimicrobial peptide, histatin 5

Author:

Bochenska Oliwia,Rapala-Kozik Maria,Wolak Natalia,Aoki Wataru,Ueda Mitsuyoshi,Kozik Andrzej

Abstract

Candida albicans, belonging to the most common fungal pathogens of humans, exploits many virulence factors to infect the host, of which the most important is a family of ten secreted aspartic proteases (Saps) that cleave numerous peptides and proteins, often deregulating the host’s biochemical homeostasis. It was recently shown that C. albicans cells can inactivate histatin5 (His5), a salivary histidine-rich anticandidal peptide, through the hydrolytic action of Saps. However, the current data on this subject are incomplete as only four out of ten Saps have been studied with respect to hydrolytic processing of His5 (Sap2, Sap5, Sap9-10). The aim of the study was to investigate the action of all Saps on His5 and to characterize this process in terms of peptide chemistry.It was shown that His5 was degraded by seven out of ten Saps (Sap1-4, Sap7-9) over a broad range of pH. The cleavage rate decreased in an order of Sap2>Sap9>Sap3>Sap7>Sap4>Sap1>Sap8. The degradation profiles for Sap2 and Sap9 were similar to those previously reported; however, in contrast to the previous study, Sap10 was shown to be unable to cleave His5. On a long-time scale, the peptide was completely degraded and lost its antimicrobial potential but after a short period of Sap treatment several shorter peptides (His1-13, His1-17, His1-21) that still decreased fungal survival were released.The results, presented hereby, provide extended characteristics of the action of C. albicans extracellular proteases on His5. Our study contribute to deepening the knowledge on the interactions between fungal pathogens and the human host.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3