Inhibitory effect of selenomethionine on carcinogenesis in the model of human colorectal cancer in vitro and its link to the Wnt/β-catenin pathway.

Author:

Korbut Edyta,Ptak-Belowska Agata,Brzozowski Tomasz

Abstract

Selenium compounds have been implicated as anticancer agents; however, the mechanism of their inhibitory action against cancer development has not been extensively investigated. The constitutive activation of the Wnt/β-catenin pathway is a central event in colorectal carcinogenesis. In this pathway, the excessive cell proliferation is initiated by the generation of β-catenin followed by overexpression of proto-oncogenes such as c-Myc. It is believed that under physiological conditions the level of c-Myc is efficiently controlled by accessibility of β-catenin protein through the process of phosphorylation by glycogen synthase kinase 3β (GSK-3β). Here, we determined whether selenomethionine (SeMet) can inhibit cell growth and affect the Wnt/β-catenin pathway in HT-29 human colorectal cancer cells in vitro. The effective cytotoxic doses of SeMet have been selected after 48 h of incubation of this compound with colorectal cancer HT-29 cell line. The MTT assay was used to assess cell viability and the protein and mRNA levels of β-catenin and c-Myc were determined by Western blotting and qPCR, respectively. The SeMet potently inhibited growth of HT-29 cells, significantly decreased the β-catenin protein and mRNA concentration, down-regulated the c-Myc gene expression and up-regulated pro-apoptotic Bax protein expression. Moreover, SeMet increased the level of GSK-3β phosphorylated at serine 9 (S9) and significantly increased the level of β-catenin phosphorylated at S33 and S37. We conclude that SeMet suppresses the growth of HT-29 colorectal cancer cells by the mechanism linked to the Wnt/β-catenin pathway, however, the degradation of β-catenin may occur independently of GSK-3β catalytic activity and its phosphorylation status.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3