Towards understanding the role of sialylation in melanoma progression

Author:

Kolasińska Ewa,Przybyło Małgorzata,Janik Marcelina,Lityńska Anna

Abstract

Aberrant expression of sialic acids or altered linkage types is closely associated with malignant phenotype and metastatic potential, and can have prognostic significance in human cancer. The present study was undertaken to evaluate whether expression of sialylated derivatives on melanoma cell surface is associated with tumour progression. Four cell lines (WM1552C, WM115, IGR-39 and WM266-4) were used in the study. Cell surface expression of sialic acids was evaluated by flow cytometry with the use of Maackia amurensis and Sambucus nigra lectins. Moreover, adhesion and migration potential of melanoma cells and involvement of sialic acids in these processes were analysed. We have demonstrated that WM266-4 cells have a significantly higher level of α2,3-linked sialic acid residues than other cells, whereas IGR-39 cells had lower expression of α2,6-linked sialic acids. The adhesion efficiencies of WM1552C and WM115 cells were significantly lower than that of IGR-39 and WM266-4 cells. In contrast, WM266-4 cells repaired scratch wounds at least twice as fast as other cells. Melanoma cell adhesion to fibronectin in the presence of Sambucus nigra agglutinin (SNA) was reduced only in IGR-39 and WM266-4 cells, whereas the impact of Maackia amurensis agglutinin (MAA) on this process was much more important. Migration efficiency of melanoma cells was reduced more strongly in the presence of MAA than SNA. In conclusion, our results show that melanoma progression is associated with the increased expression of α2,3-linked sialic acids on the cell surface and these residues could promote melanoma cell interaction with fibronectin.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3