LncRNA Hoxb3os protects podocytes from high glucose-induced cell injury through autophagy dependent on the Akt-mTOR signaling pathway

Author:

Jin Juan,Gong Jianguang,Zhao Li,Li Yiwen,He Qiang

Abstract

Background: Diabetic nephropathy (DN) is in the first place of the causes that lead to end-stage renal disease in the world. Thus, it is urgent to develop a novel diagnostic or therapeutic strategy that could stop the progression of diabetic nephropathy. Methods: RNA-sequencing was conducted in high glucose (HG)-treated MPC5 cells (podocytes). Cell morphology was examined under a light microscope. Upon high-glucose challenge, the effects of lncRNA Hoxb3os overexpression on MPC5 cells apoptosis, viability, autophagy and Akt-mTOR signaling were evaluated using flow cytometry, Cell Counting Kit-8, qRT-PCR, and Western blotting. TUNEL staining and ELISA were performed to confirm the establishment of DN model in db/db mice. Results: High-glucose exposure dramatically altered lncRNA expression profile in MPC5 cells (fold change>2), including 305 upregulated lncRNAs and 451 downregulated lncRNAs. LncRNA Hoxb3os expression was significantly reduced in the HG-induced podocyte damage model, as well as in the renal tissues from db/db mice with spontaneous DN. Overexpression of Hoxb3os significantly reduced the apoptosis rate and increased the viability of MPC5 cells under HG conditions. Further study revealed that exogenous Hoxb3os increased autophagy level in HG-exposed MPC5 cells via abrogating Akt-mTOR signaling pathway and that the process was possibly implicated in the upregulation of SIRT1. Conclusion: LncRNA Hoxb3os protected podocytes from HG-induced damage by regulating Akt-mTOR pathway and cell autophagy. Thus, lncRNA Hoxb3os appears as a potential biomarker in the diagnosis and treatment of DN in the future.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3