Upregulation of FoxM1 protects against ischemia/reperfusion-induced myocardial injury

Author:

Zhang Gang,Yu Kun,Bao Zhi,Sun Xiaofeng,Zhang Dongying

Abstract

Background. Ischemia/reperfusion (I/R) induced lethal tissue injury in myocardium. FoxM1 (Forkhead Box M1), expressed in proliferating cardiac progenitor cells, could regulate myocardial development. However, the role of FoxM1 in I/R-induced myocardial injury has not been reported yet. Methods. Rats were conducted with regional ischemia followed by reperfusion in myocardium through ligation of the left anterior descending coronary artery. Triphenyl-tetrazolium chloride staining was utilized to assess the infarct size. ELISA was performed to detect activities of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH). Protein expression of FoxM1 in heart tissues and H9c2 were determined by western blot. H9c2 cells were used to establish a hypoxia/reoxygenation cell model, and the cell viability, proliferation and apoptosis were evaluated by MTT, EdU (5-ethynyl-2’-deoxyuridine) staining and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, respectively. Adenovirus (Ad)-mediated over-expression of FoxM1 was injected into the anterior wall of the left ventricle of rats to evaluate the role of FoxM1 on in vivo I/R-induced myocardial injury. Results. FoxM1 was reduced in heart tissues isolated from rats post myocardial I/R injury. Forced FoxM1 expression increased cell viability and proliferation of hypoxia/reoxygenation-induced H9c2, while repressed the cell apoptosis with increased Bcl-2 and decreased Bax and cleaved caspase-3. Injection of Ad-FoxM1 suppressed infarct size of the heart and decreased activities of CK-MB and LDH. Conclusion. FoxM1 attenuated I/R-induced myocardial injury, providing potential therapeutic target for the disease.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3